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Summary. Platinum(II) chloride was used in the hydrosily-
lation of 1,1,3,3-tetramethyldisiloxane and divinylbenzene.
The reaction was monitored online by FTIR spectroscopy
and reaction kinetics were determined by Self Modeling
Curve Resolution (SMCR). The hydrosilylation polymeriza-
tion follows a second order polyaddition kinetics with k¼
2.03�10�4 dm3 mol�1 s�1.

Keywords. Polymerization; Self modeling curve resolution
(SMCR); Factor analysis; IR spectroscopy; Homogenous ca-
talysis.

Introduction

Hydrosilylation is the most important technique to

form Si–C bonds and describes the addition of sili-

con hydrides to double or triple bonds [1]. Already

Speier et al. [2] described these usually platinum-

catalyzed reactions to be highly exothermic and fast,

making thermal management of the reaction crucial

and thus, kinetic reaction analysis challenging. Hy-

drosilylation reactions may also be used for the syn-

thesis of polymeric materials (cf. Scheme 1) [3].

Quite often oligomers containing the required func-

tionalities are further polymerized and=or crosslinked

by hydrosilylation [4]. Siloxane-elastomers, like poly-

dimethylsiloxane, are commonly synthesized in that

way, being an easy-to-use, moldable polymerization-

system [5]. In case bifunctional molecules, i.e. dienes

and diynes, are used, hydrosilylation yields alkyl-

silane or alkenylsilane polymers (cf. Scheme 1,

Type B) [6].

The determination of reaction kinetics lies right at

the heart of physico-chemical analysis, potentially

revealing the molecular mechanism and establishing

a mathematical model describing the chemistry un-

der study [7]. This mathematical model forms the

basis for reactor design and the subsequent engineer-

ing processes implied in producing chemicals on an

industrial scale [8]. Reaction kinetics are usually

determined by fitting concentration profiles to a line-

arized model. Concentration profiles are best obtained

by online spectroscopy. Application of Lambert-

Beer’s law

El ¼ c � �l � l ð1Þ
(El is the absorbance at wavelength l, c the con-

centration, �l the absorption coefficient at wave-

length l, and l the path length of the light through

the sample) permits the calculation of concentration

from absorbance; �l is normalized and combined

with l. When analysis is performed at more than one

wavelength (like measuring a whole spectrum) and

when the concentration profiles of several species

are observed at once, Eq. (1) may be expanded to

its multivariate form.

D ¼ C � A ð2Þ
(D is the data matrix, C the matrix of the concen-

tration profiles, and A the matrix of pure component
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spectra) D is the common result of online spectro-

scopic reaction monitoring and has dimension m�n

with m being equivalent to time (how often and

when spectra have been recorded) and n being the

wavenumber (depending on the applied spectro-

scopy and ranging for our ATR-FTIR-setup from

600–4000 cm�1). Kinetic analysis is only interested

in C which is of the dimension m�r with r being the

number of reactants (including potential intermedi-

ates and by-products) involved. Essentially, using

Eq. (1) the reasoning is equivalent; El is measured

while the evolution of c with time is of interest for

reaction kinetics. The superiority of the multivariate

approach is obvious. Equation (1) implies several as-

sumptions (like exact assignment of a single wave-

length (peak) to a specific molecule, or peak-purity,

etc.) that are cumbersome to ascertain and which

simply might not hold. Moreover, an univariate

analysis will give the concentration profile of only

one component, making a decision on the reaction

mechanism and which kinetic model to fit very dif-

ficult. For kinetic analysis SMCR is a well suited

multivariate approach [9]. SMCR requires bilinear

data which essentially corresponds to the form of the

data matrix D, composed of multi-wavelength spec-

tra measured at different moments of the time scale

[10]. Factor analysis serves as a basis for any SMCR

approach [11]; D is reduced to its lowest dimen-

sionality by Principal Component Analysis (PCA,

usually calculated by Singular Value Decomposition

(SVD)) [12]. This gives a preliminary solution to

Eq. (2), which is further refined using SMCR to suf-

fice a sensible chemical context [13].

We report the hydrosilylation polyaddition of

1,1,3,3-tetramethyldisiloxane 1 and divinylbenzene

2, catalyzed by platinum(II) chloride 3, and the de-

termination of its reaction kinetics by SMCR. The

present system is in analogy to the hydrosilylaton of

styrene and triethylsilane using the same platinum

source as reported by Caseri and Pregosin [14]. Our

goal is to find out whether the easy-to-use PtCl2-cat-

alyst-system can be employed to yield poly[1,1,3,3-

tetramethyl-1-(ethylenephenyleneethylene)disiloxane]

4 and to show the superiority of a multivariate ap-

proach for kinetic analysis even when the kinetic mod-

el under study is simple and analytically solvable.

Results and Discussion

Figure 1 shows the FTIR-spectra recorded during re-

action; this is a projection along the time axis (m-

dimension) of D (cf. Eq. (2)).

The siliconhydride peak around 2100 cm�1 is not

suited for quantitative analysis since there is strong

background absorbance from the diamond-ATR-

crystal in the same region. The fingerprint region

shows changing peak intensities with potentially pure

peak profiles of a single component. Careful investi-

gation of the educt and solvent spectra suggests that

Fig. 1. Fingerprint region of D, projected along the time axis
(above). Linearized plot of the peak profile at 878 cm�1 (be-
low); it is not possible to reasonably fit a straight line to this
peak profile

Scheme 1

286 N. C. Imlinger et al.



the peaks at 878 cm�1 (assigned to Si–H bending)

and at 988 cm�1 (assigned to Vinyl-CH2 wagging)

may be suited for univariate analysis (cf. Eq. (1))

[15]. IR is not very sensitive to double bonds; there-

fore the signal at 988 cm�1 in Fig. 1 is small and, due

to potential overlap with the neighboring siloxane

peak, unsuited. From the peak at 878 cm�1 a sensible

peak profile could be extracted. Assuming a second

order kinetic model (typical for polyadditions [16]) a

linear dependence of the inverse concentration versus

time should be present.

dc

dt
¼ k � c2 ð3Þ

This linearized model did not fit the peak profile

at 878 cm�1 (cf. Fig. 1) suggesting either a different

reaction model or that the signal at 878 cm�1 is not

a pure component peak. Consequently, we applied

SMCR to resolve the reaction kinetics. Several issues

need to be addressed in this context [17], which are

(i) the potential rank deficiency of D that may arise

from collinearity in the concentration profiles; (ii) the

determination of principal factors, or in other words

the number of reacting species present in D, which

implies a suitable kinetic reaction model; and (iii) the

question which objective function to use for the opti-

mization algorithm and the identification of sensible

starting and boundary values for the optimization

algorithm.

Determination of Chemical Rank

D was measured isothermally at 60�C. Rank analysis

revealed that D is rank deficient. Mathematically, the

rank of a matrix is the number of linearly indepen-

dent vectors of this matrix [18]; that is, there are

linear dependencies in D attributed to the concentra-

tion profiles. This is a common problem in chemistry

since reactions are seldom monomolecular, but rath-

er have several reagents that react in parallel [19].

Amrhein et al. suggested methods for rank aug-

mentation of data matrices [20]. We chose to run a

non-isothermal reaction inducing further changes in

the concentration profiles. This gave a data matrix

Dnon-iso for which Eq. (2) is also valid. Different

concentration profiles Cnon-iso apply but the pure

component spectra A remain the same, provided there

is no thermal dependency of the spectra. A compar-

ison of the spectra of the reaction mixture at 70�C
and at 40�C showed virtually no difference thus, no

dependence on temperature. Dnon-iso was no longer

rank deficient and was analyzed by the Alternating

Least Squares algorithm (ALS) [21]. ALS subse-

quently and iteratively solves the two Eqs. (4) and (5).

Acalc ¼ Cþ
calc � Dnon-iso ð4Þ

Ccalc ¼ Dnon-iso � Aþ
calc ð5Þ

Iteration is stopped when the error matrix F meets

the convergence criterion ", i.e. when the difference

between the measured matrix Dnon-iso and the calcu-

lated one Dcalc (cf. Eq. (2)) is minimized.

F ¼ Dnon-iso � Ccalc � Acalc ð6Þ

The results from Abstract Factor Analysis (AFA)

[11] were used to start the ALS algorithm. Figure 2

shows the spectra as they were recovered by ALS

from Dnon-iso. Since the pure component spectra

must be the same in D and in Dnon-iso, C can be

calculated employing Eq. (5) with Acalc and D, and

the linearized plot thereof is also shown in Fig. 2.

Principal Factor Analysis

Malinowski was the first to introduce the theory of

error to factor analysis [22]. The key task is to sepa-

rate the true signal from noise (measurement error)

using the number of principal factors, which addi-

tionally reduces the size of the data matrix to the

factor space. Several methods have been developed

Fig. 2. Fingerprint region of the spectra as recovered by ALS
(above). Linearized plot of the concentration profile as recov-
ered by ALS (below); this was subjected to linear regression
and kinit could be calculated. In the figure above ‘�’ denotes
educt 1, ‘ ’ denotes educt 2, and ‘—’ denotes the product
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to determine the number of principal factors [11].

Meloun et al. compared commonly used methods;

the authors determined the Factor Indicator Function

(IND) and the index RESO (Ratio of Eigenvalues

Calculated by Smoothed PCA and those by Ordinary

PCA) to perform best in predicting the number of

principal factors [23]. In the present work, addition-

ally to IND and RESO, we applied the Scree test and

the plot of eigenvalues (eig) from PCA to assess the

number of principal factors. In this context we pro-

pose a slight modification to the index RESO as

published by Chen et al. [24].

RESOi ¼
eigsi
eigoi

ð7Þ

Instead of Eq. (7) (with eigs being the eigenvalues

of smoothed PCA and eigo the eigenvalues of ordi-

nary PCA) and plotting the logarithm of RESO, we

used the Durbin-Watson criterion (DW) [25], which

shows correlations between consecutive points and

becomes higher with increasing randomness.

RESO� DWi ¼
ðeigsi � eigoi Þ

2

eigsi � eigoi
ð8Þ

When comparing eigs and eigo pairwise using DW,

its value will become high as soon as eigs differs from

eigo. Consequently, a rise to a high value in Eq. (8)

indicates the number of principal factors. From our

experience, comparing the ratio of eigenvalues calcu-

lated by smoothed PCA and those by ordinary PCA

using the Durbin-Watson criterion, RESO-DW (cf.

Eq. (8)), gives a clearer indication on the number of

principal factors.

As can be seen in Fig. 3 the determination of the

number of principal factors is less dependent on the

smoothing factor, when using RESO-DW. The num-

ber of principal factors of D is clearly assessed to

three from RESO-DW, whereas there might be some

doubt whether the number of principal factors of D

is two or three when using RESO. The number of

principal factors in D was calculated using all afore-

mentioned methods and assessed to be three.

Kinetic Optimization and Reaction Analysis

The procedures involved with the ALS algorithm

and factor analysis revealed that a second order

kinetic model may be safely assumed and gave an

initial estimate kinit for further optimizations (kinit
was calculated by linear regression from the gradient

of the linearized model shown in Fig. 2). Using kinit
and a second order kinetic model, concentration pro-

files Ctarget can be calculated (cf. Eq. (3)). Ctarget is

target tested into D and k is iteratively altered until

Ctarget is optimized to best fit D [26]. The objective

function used for the optimization algorithm is

shown in Eq. (9) [27]. (e is the error, I the identity

matrix, and U an orthonormal matrix spanning the

row space of D; U is calculated by SVD of D)

e ¼ kðI � U � UTÞ � Ctargetk2 ð9Þ

Geometrically speaking, ðI � U � UTÞ is a projec-

tion matrix. If Ctarget represents the true concentra-

tion profiles, it is correctly projected into the data

space D and e vanishes [28].

Problems in optimization occur due to local min-

ima. We addressed this by applying a second ob-

jective function to check if the same minimum

is found by the optimization algorithm. This was

based on a Nonlinear Least-Squares approach [29]

with the objective function depicted in Eq. (11).

Equation (10) merely corresponds to the aforemen-

tioned data reduction by factor analysis (V is an

orthonormal matrix spanning the column space of

D and calculated by SVD of D). Since V represents

the factor space, the dimension of DV is smaller

than that of D without significant loss of informa-

Fig. 3. Plot of the logarithm of RESO (cf. Eq. (7)) versus the
number of factors (above). Plot of RESO-DW (cf. Eq. (8))
versus the number of factors (below). In both cases a devia-
tion from zero level shows the number of principal factors. In
both figures the smoothing factors 0.1, 1, and 10 are denoted
by ‘ ’, ‘ ’, and ‘ ’
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tion. This considerably reduces computational mem-

ory requirements.

DV ¼ D � V ð10Þ

e ¼ kðI � Ctarget � Cþ
targetÞ � DVk2 ð11Þ

Using Eq. (11), k is modified to keep the iterative

process going until D is best reproduced similar to

Eq. (6). Furthermore, instead of using only the Fro-

benius norm as depicted in Eqs. (9) and (11) we

additionally used objective functions based on DW

[25]. When Eqs. (9) and (11) are not squared ele-

mentwise and summed, e is not a scalar but a matrix

E. The elements of E are compared using DW giving

a scalar value (in analogy to e) which accounts for

the randomness in E. If E represents a true error, its

values will be uncorrelated and random. Thus, a high

value using DW indicates the best fit. We used the

negative of this values (with the best fit being the

smallest number) which resulted in another optimi-

zation to a minimum.

All four optimizations converged (with the change

in e being less than "¼ 10�100) and gave k¼
2.03�10�4 dm3 mol�1 s�1 (at 60�C with 120 ppm

Pt). The resulting concentration profiles and spectra

are shown in Fig. 4.

These spectra are much smoother than those re-

covered by ALS. Like in Fig. 2 the spectra of the two

educts are calculated to be similar. The calculated

educt spectrum is a mixture of the pure component

spectra of both educts and the solvent which is

attributed to the aforementioned linear dependencies

in chemical reactions when components react in par-

allel. The educt and product spectra highly overlap

which is why a second order reaction kinetic was not

evident from D and its peak profiles.

Finally, the reaction power was monitored parallel

with conversion. Integration of the power gives a

reaction enthalpy of 110 kJ=mol (at 60�C, based on

divinylbenzene); a maximal power of 220 W=kg

(based on the total reaction mass) is released within

the first minute.

Polymer Backbone and Polymer Properties

The newly formed Si–C bond may be � or � relative

to the phenyl-ring.

Fig. 4. Spectra (above) and concentration profiles (below) as
calculated by SMCR. In both figures ‘�’ denotes 1, ‘ ’
denotes 2, and ‘—’ denotes 4

Scheme 2
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The presence of the two reaction pathways and the

structure of the polymeric backbone was unambig-

uously resolved by H,H-COSY and 1H NMR ex-

periments. The ratio of �- to �-reaction is 7:3 in

accordance with Ref. [14]. Compound 4 was preci-

pitated by addition of methanol which gave rise to

hydrogen evolution due to reaction of the excess

siliconhydrides with methanol. This process was

confirmed by NMR. First, an NMR-sample taken

directly from the reaction mixture showed siliconhy-

drides while an NMR from the purified product lacked

those signals, yet showed a multiplet at 3.3 ppm (all in

benzene-d6). Second, this multiplet at 3.3 ppm was

assigned by HSQC-DEPT to be a silicon-methoxy

group.

Size Exclusion Chromatography (SEC) shows oli-

gomeric fractions in the product and a detached elu-

tion peak with Mn¼ 88800 g=mol (polydispersity

index (PDI) 3.5). If the oligomeric fractions are inte-

grated into analysis, Mn¼ 2900 g=mol (PDI 62). The

Carothers-Equation [16] allows calculating the de-

gree of polymerization (Xn) from conversion p and

non-stoichiometry r.

Xn ¼
1 þ r

1 þ r � 2 � r � p ð12Þ

Taking the calculated Xn¼ 11.6, the molecular

weight of the polymer can be estimated to Mn¼
3060 g=mol. Since the reaction was allowed to pro-

ceed to full conversion, the high polydispersity of 4
is due to stoichometric mismatch, which in turn

results from the ethylvinylbenzene present in 2 (cf.

Experimental).

Experimental

Siloxane 1 is an in-house product of Wacker Chemie AG.
Compounds 2, 3, toluene, methanol, and benzene-d6 were
purchased from VWR. While 3, methanol, and benzene-d6

were used without further purification, 1, 2, and toluene were
freshly distilled under N2. Divinylbenzene 2 was of technical
grade; that is, besides consisting of o- and p-isomers, the
corresponding ethylvinylbenzene isomers were present. After
distillation under N2 the amount of ethylvinylbenzene was
35 mol% by NMR.

Experiments were performed in a heat-flow reaction calori-
meter (CPA202, ChemiSens) and monitored using an ATR
immersion probe (Infrared Fiber Sensors) coupled via silver
halide fiber optics to a FTIR-spectrometer (Nicolet 380, Thermo
Electron Corporation). In a typical run 40 cm3 toluene, 23 cm3

1, and 18 cm3 2 were heated to 60�C. Reaction was initiated
by addition of 8.4 mg 3 (dissolved in 1 cm3 2). Thus, the reac-

tion content was 40 cm3 solvent, 120 ppm Pt, 0.130 mol 1, and
0.133 mol 2; the latter needs to be corrected due to the pres-
ence of ethyl groups (vide supra) to 0.110 mol. The reaction
was vigorously stirred and kept isothermal at 60�C until total
consumption of 2. The non-isothermal experiment was started
in isothermal mode at 40�C for 50 min, then raised to 70�C
with a heating rate of 0.5 K=min, and kept in isothermal mode
at 70�C until total consumption of 2. IR spectra were recorded
every minute. The product was precipitated by addition of
methanol, decanted, and dried. No attempt was made to
extract the remaining catalyst. Thus, the initially yellow pre-
cipitate turns black during isolation. The polymer 4 was ana-
lyzed by Differential Scanning Calorimetry (DSC) and
showed a glass transition temperature Tg¼�77.5�C (dT=dt¼
10 K=min, Mettler Toledo DSC 821). Molecular weight was
determined by SEC (cf. Polymer Backbone and Polymer Prop-
erties) at 45�C (PLgel 5�m MIXED-C Column, Polymer
Laboratories) against polystyrene standards using toluene as
the mobile phase and a refractive index detector (Shodex RI-
101). NMR spectra were measured in benzene-d6 (Bruker
AVANCE 400 and Bruker AVANCE 500) at 25�C and are
listed in ppm referenced using the solvent peak. The density
of the reaction mixture was measured (PAAR Physica DMA
55) and does not deviate from ideality. Thus, volumetric con-
centrations were used throughout.

Poly[1,1,3,3-tetramethyl-1-(vinylphenyl)ethyl-disiloxane]

(4, C2H5(C14H24OSi2)nOCH3)

Prepared according to the description above; 1H NMR
(400 MHz, benzene-d6): �¼ 7.25–6.90 (m, aromatic H), 3.30
(m, OCH3), 2.75 (m, CH2), 2.20 (m, CH), 1.45 (m, CH3), 1.00
(m, CH2), 0.20 (m, SiCH3) ppm; 13C NMR (125 MHz, ben-
zene-d6): �¼ 128.4 (aromatic CH), 125.4 (aromatic CH), 50.6
(OCH3), 31.9 (CH), 30.0 (CH2), 21.3 (CH2), 15.0 (CH3), 0.6
(SiCH3) ppm; IR (Diamond-ATR): ���¼ 3080, 3020, 2960,
2920, 2860, 1610, 1490, 1450, 1400, 1380, 1250, 1180, 1050,
900, 830, 810, 780, 730 cm�1.

All calculations were performed in Matlab version 7.1
(Mathworks). Though the differential equations of the pres-
ent system are analytically solvable, all equations were
solved numerically using the already implemented algo-
rithms for ordinary differential equations (ode15s). The
optimization algorithm was gradient based (lsqnonlin, Opti-
mization Toolbox). Instead of calculating the pseudoin-
verse, Eqs. (4) and (5) were solved using the Fast Non
Negative Least Squares algorithm (FNNLS) [30]. This as
well as the ALS algorithm are part of the PLS_Toolbox
(Eigenvector Research).
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Furusjö E, Danielsson L-G (1998) Anal Chim Acta
373: 83; c) Knorr FJ, Harris JM (1981) Anal Chem
53: 272
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